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A study is made of electron-electron correlation functions for use in trial 
wave functions for small molecules. New forms are proposed that have only 
a few variational parameters,  and these parameters have physical meanings 
that are easily discerned. Total energies for H2, LiH and Li2 computed using 
these correlation functions are presented, and comparison is made with 
previous forms, including the Jastrow-Pade form often used in Monte Carlo 
studies. We further treat the possibility that correlation depends not only on 
the separation of a pair of  electrons but also on the location of the electron 
pair relative to the nuclei - indicative of  a density-dependent or many body 
correlation effect. Our results indicate that such a many-body correlation 
effect is weakly present. 
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I. Introduction 

In variational methods of  obtaining the energy of a quantum system, one evaluates 
the expectation value ET = (~PTIHI~T) for a normalized trial wave function ~T.  
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Parameters in ~ r  are varied and, by the variational theorem, ET remains an 
upper bound to the true ground-state energy. The minimum energy ~ r  thus 
provides the best upper bound to the energy, and in this sense is the "best" wave 
function. Variational Monte Carlo (VMC) methods [1-4] follow this same 
approach, with the exception that the necessary integrals are performed by a 
variety of Monte Carlo methods. 

In the fixed-node quantum Monte Carlo (QMC) method [5-8], the trial function 
~rT, plays a different role. It acts as a guiding function for importance sampling, 
speeding up the stochastic procedure which solves the Schr6dinger equation. A 
better ~ T  for fixed-node applications enables one to use less computer time to 
obtain the final result [8, 9]. 

A frequently used form of ~T  [4-30] in variational and, recently, QMC calcula- 
tions is expressed as a product of two factors, namely, 

~r=q~S, (1) 

where ~b is an independent-particle (generally self-consistent field or SCF) 
approximation to the exact wave function, and is antisymmetric in the electron 
coordinates. The function S, on the other hand, typically depends explicitly on 
interelectronic coordinates rlj, and is symmetric in these coordinates. In reality, 
of course, many-body correlations also play a role, but we ignore these at present. 
Our goal will be to seek a form for the function S(rq) that may be readily 
optimized to yield lower variational energies. 

We note that there are two different sources of electron correlation [10]. Due to 
the Pauli principle, electrons of like spin have an exchange correlation. This 
correlation is partially accounted for by the determinantal part of ~ r .  Additional 
correlation derives from the Coulomb repulsion between electrons, independent 
of their spins. The correlation function S is primarily intended to describe the 
latter. 

Correlation functions used previously in non Monte Carlo variational methods 
were limited by the difficulty in performing the necessary integrals over Slater-type 
basis functions [ 11 ]. Beyond two-electron systems Gaussian correlation functions 
are generally employed [12] for this reason. In VMC and QMC calculations, 
however, one may readily deal with arbitrary forms of correlation functions. 

2. Correlation functions 

As a starting point in discussing correlation functions, let us examine the general 
behavior that is often assumed to characterize such functions. 

(i) S(rij) should satisfy the electron cusp condition [5-8, 10, 13]: 

1 0 S  =a, (2) 
S r~=o 

where a = 0.5 a.u. for electrons of opposite spin. For electrons of like spin, the 
electron cusp condition is partially satisfied by the Slater determinant. Thus S is 
only needed to satisfy the "remaining cusp", which it does with a = 0.25 a.u. 
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(ii) As ro increases from zero, S(ru) should rise monotonically to provide for an 
increasing probability that two electrons are separated by rij, and to provide 
maximum inter-electronic repulsion at r o = O. 

(iii) By interpreting (2) as a pseudoforce, which we discuss below, it is argued 
that as ro increases, S(rq) should approach a non-zero constant. This provides 
a pseudoforce which decays as an electron pair is separated, and reflects the 
weakening of the Coulomb repulsion. Forms which explicitly consider this 
requirement were pioneered by Handy [14], though it is not clear that this 
condition is rigorously justified. An argument that supports this requirement is 
that when a molecule is separated into subsystems the wave function should 
factor. The correlation between two electrons which ultimately belong to different 
sub-systems should thus vanish, and so S approaches a constant. For the addi- 
tional purpose that it limits the possible forms for S, we exploit this condition 
here. Without loss of generality we choose the constant S(oo) as unity. 

A number of forms for the electron correlation function S have been used 
previously. For example, Hylleraas [15] considered the forms 

S(rl2 ) = exp (c~r,2) (3) 

and 

S(r~2) = 1 + ar~2 (4) 

for He-like systems, where ce is a variational parameter. 

Using Eq. (1) with a minimum basis set for r Green et al. [16a] derived and 
solved numerically the differential equation for S. They found the exact solution 
in this case to be fit well by Eq. (4) out to several bohr, and to lead to only slight 
improvement in the energy over the use of (4). Frost and Braunstein [16b] also 
obtained quite satisfactory variational results with Eq. (4) in their treatment of 
H2. Nevertheless, neither (3) nor (4) satisfies (iii) above; both diverge as r~2 ~ co, 
and the correlation is too strong at large pair separations. In 1957 Roothaan [17] 
proposed a modified form for S that he applied to He, namely, 

3 
S(r12) = 1 - e x p  (-c~r,2) • b~r ~. (5) 

~=0 

This function satisfies (i)-(iii), however, the presence of the electron-nuclear 
coordinate r limits it to monatomic systems. 

A number of other finite series expressions for S were subsequently explored. 
Two examples are the Roothaan-Weiss form [18]: 

S(r,2) = ~ c~(~'r12)", (6) 
~=0 

and the Gaussian form [12d] 

S(r l2  ) = ~ bp. exp (-/3urn2). (7) 
~=0 
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Equation (6) derives its flexibility from the many terms that are possible in the 
sum. However, it is not succinct and generally contains so many parameters that 
optimization becomes quite difficult. Furthermore, no clear physical meaning is 
readily given to these parameters. Finally, (6) also fails condition (iii). On the 
other hand, the Gaussian expansion (7) was chosen primarily for mathematical 
convenience. Although it also yields lowered variational energies, this form does 
not satisfy the cusp condition, (i). 

Pritchard [19] combined the Roothaan-Weiss form (6) with the Hylleraas form 
(3) in a product. He observed that the cusp condition was satisfied for his 
optimized parameters. However, the large r o behavior of his function remained 
problematic: For closed-shell systems he obtained a > 0, for which S ~  co; for 
open-shell systems a < 0, leading to S ~ 0. Furthermore, Pritchard's results indi- 
cate little improvement in the energy over the use of (6) alone. 

In the 1960's, Conroy [20] investigated a number of correlation functions designed 
to satisfy the electron-cusp condition. Promising results were obtained, but his 
forms were complicated expansions entailing a product of powers of a number 
of two-electron variables in addition to r 0. Later, Carlton [21] proposed a simpler 
form, also using auxilliary variables, namely, 

~ 2 /  ~ 1 / 2  S = ( l + r ~ + t 2 + , o / ~ :  , (8) 

where t -= r2-  rl and s ~ rl + r2. The latter variables were introduced by Hylleraas 
for He [15]. These forms are capable of high accuracy, and have been used 
recently by Umrigar et aL [22] in VMC trial wave functions for two- and 
four-electron systems. They have achieved excellent results for these systems, 
though relatively large expansions were required. 

The goal of the present effort is to construct S with the correct asymptotic behavior 
and thereby perhaps achieve a more concise wave function, and concomitantly 
a local energy function having fewer f luc tua t ions-a  condition of particular 
significance in Monte Carlo calculations. Taking conditions (i)-(iii) as suitable 
criteria, we note that many functional forms can satisfy them. For example, there 
is the often-used Jastrow-Pade pair correlation factor [5-8, 23] 

S ( r ~ ) = e x p  ( - ~  U~j) , (9) 

with a pseudopotential Uo given by 

- Uij = aro/(1 + bru), (lOa) 

and its quadratic extension [24], 
2 

alr~ + a2rij (10b) 
- U  o -  l + bffij + b2r2 �9 

To satisfy the cusp condition (i), a in (10a) or al in (10b) must be the constant 
a of Eq. (2). Handy [14] considered a further extension wherein 

- V,j = �89 + blro) ] + E  DkGk(r,, r:) + E  dp[gp(r~) + gp(rj)], (11) 
k p 



u~162 r 

t" -= (~,~,.)" 
- n  

and 

F~ =- r,/ ( l + b2r,). 
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in which gp(ri) = ?~, and Gk(ri, rj) is an expansion in powers of u, t, and s, where 

(12a) 

(12b) 

(12c) 

(12d) 

The use of the variable ~i insures the desired behavior as r o.-~ ~;  furthermore, 
the cusp condition is satisfied (though only for unlike spins in Eq. (11)). Handy 
used a 19-term expansion of G k in a study of Be. Using the transcorrelated 
method [25], a non-variational approach, he obtained 88% of the correlation 
energy. Unfortunately, a variational (Monte Carlo) calculation [4b] with the 
same wave function obtained none of the correlation energy. Though Handy's 
form may be useful if properly optimized, it appears to have too many parameters 
to be broadly applicable. In fact, the quadratic Jastrow-Pade form discussed 
above (cf., Eq. (10b)) is already difficult to optimize. In addition, care must be 
taken to ensure these functions are monotonic. The following quadratic pseudo- 
potential partially addresses these concerns, 

arij ( arij ] 2 
- U u = l + b r o + f l  \ ~ /  �9 (13) 

To a certain extent the parameter b is responsible for the correlation range and 
fi governs the strength of the correlation. However, the roles of b and/3 are not 
independent. For example, ( b = 2 . 2 , / 3 = 2 )  and ( b = 1 . 9 , / 3 = 1 )  give almost 
identical curves. Use of large /3 provides some improvement in this regard, 
although (13) has led to only slight improvement in the variational energy [26] 
relative to the simpler one-parameter form Eq. (10a). 

In our attempt to construct improved correlation functions we considered three 
factors. First, how strong is the correlation? We can quantify this by the difference 
in S(r~) between r~ ~ 0 and r~j ~ oo. Second, how long is the range of the correla- 
tion? We can adjust this by controlling how rapidly S(ri~) approaches its 
asymptotic (r o ~ ~ )  constant value. Third, what is the functional form or shape 
of the curve S(r~)? Is it linear, concave, or convex? As a minimum, one requires 
OS/Or o >- 0 to ensure that the correlation between two electrons is repulsive. 

For arbitrary S we define a pseudopotential U ~ - l n  S (cf. Eq. (9)). The corre- 
sponding pseudoforce F/j = - 0 U / 0 r #  should be repulsive to physically keep 
electrons apart. If we rewrite F~j as F o = (I /S)OS/Or o we see that indeed one 
wants OS/Orij >- O. Furthermore, for rq = 0 the cusp condition sets the pseudoforce 
between two electrons at the value a (Eq. (2)). Also, F o should monotonically 
decrease as r# ~ oo. Specifically, with this interpretation of F,~, one expects that 
F/j ~ 0 as r 0 -~ ~ ,  and the only flexibility in choosing F~j is how rapidly it drops 
to zero. 
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Let us consider how two electrons interact. Primarily, each responds to the 
Coulomb potential of the other; however, the presence of other electrons screens 
this two-particle interaction. In this case, the effective potential decays faster 
than that of a bare charge. Such a screened potential has the form 

V(r) = -  bexp ( - r / h o )  (14) 
r 

where b is a positive constant, r is the distance between the two particles, and 
AD is the Debye screening length. Generally, the higher the density of charged 
particles, the smaller is the Debye length. Making use of the idea that a pair- 
product wave function can be expressed as an exponential of the negative of a 
pseudopotential (see, e.g. Eq. (9)), a natural form for S(ro) might be 

S(ro) =exp { - - b e x p  ( - -rJ  hD) } . (15) 
r 0 

This form, however, fails the cusp condition. Nevertheless, the simple 
modification 

S(ru) =e xp  { -b  exp ( -ro/ho)}  (16a) 

satisfies all the necessary conditions when ;to = b/a, where a is defined following 
Eq. (2). This will be one of the forms we shall consider. A second form is obtained 
by noting that AD > 0, and thus for b < 1, exp ( - r J h D )  will be small. In that case, 
the form (16a) may be expanded, and gives 

S(rij) = 1 - b exp (--r~/ hD). (16b) 

In this form the cusp condition is satisfied for ;to = b/a(1 - b). This function is 
reminiscent of Eq. (5) restricted to /z =0  with a = 1/AD. It was previously 
considered by Hartree and Ingman [27] who chose it on physical grounds. In 
Eqs. (16a) and (16b) the variational parameters b and hD have physical meaning 
that is easily described: AD is a measure of the correlation range and b is a 
measure of its strength. However, as noted, to satisfy the cusp condition these 
parameters can not be chosen independently. Thus constrained, increasing b 
increases both the range and strength of the correlation in both forms. In fact, 
(16a) and (16b) differ only in the intermediate r 0 domain where (16a) is more 
repulsive. However, the repulsion should not have too long a range. Thus S 
should converge rapidly to unity when r U ~ p  (where p is a molecular distance 
scale). 

In order to adjust the range and strength of the correlation separately, we consider 
the forms 

S( rij) = exp { - b  exp ( -r iJ2b - r2 / c)}, 

and 

(17a) 

S(ro) = 1 - b exp {-(1 - b)rJ2b  - r2/c}, (17b) 
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where  b and  c are i ndependen t .  In  (17a) and  (17b), b essent ia l ly  governs  the 

s t rength and  c the range  of  the corre la t ion.  Fo r  sui table  c, S ( ro )  can be made  to 
converge r ap id ly  to un i ty  at large ri:. This gives (17) add i t i ona l  flexibili ty.  Fur the r  
f lexibil i ty can be i n t roduced  in (17) by  a l lowing an a rb i t ra ry  p o w e r  n ins tead  o f  
the quadra t i c  term. Adjus t ing  n permits  va r ia t ion  o f  the range at f ixed s t rength 
wi thout  sacrif icing the ini t ia l  ( r  0 - 0 )  repuls ive  p seudofo rce  F0. 

In  each o f  these forms,  F0 decays  as r U ~ oe. On the o ther  hand,  the Hyl le raas  
form (3) main ta ins  m a x i m u m  repu ls ion  at all r;j, i.e., F~j remains  constant .  Since 
we expect  F~j to vanish  at sufficiently large r~j, we have a t t empted  using this form 
with a cut-off at r o = A ,  with A on the scale o f  the  mo lecu la r  system. Our  
ca lcu la t ions  show that  this form is subs tan t ia l ly  worse  than  any o f  the forms we 
have d iscussed  above,  i.e. Eqs. (10), (16) and  (17), a l though  it is be t te r  than  no 
cor re la t ion  funct ion  at all. Obvious ly ,  a phys ica l ly  mot iva ted  p seudo fo rce  should  
not  d rop  ab rup t ly  to zero. On the o ther  hand,  F~: shou ld  also not  r ema in  constant .  
The l inear  form (4) with a = a is thus more  reasonab le ,  because  the force decays  
as r;j increase,  though  relat ive to the o ther  forms we p ropose  it decays  too  slowly. 
We have p e r f o r m e d  VMC calcula t ions  o f  H2 using (4) (cf. Table  2). The results 
confi rm tha t  this form is super io r  to S(ri:)  = exp (aro) ,  t hough  p o o r e r  than  (10), 
and  (16)-(17) .  

Table 1. Basis sets used in this study. The Slater determinants of molecular orbitals (MO's) are 
constructed from linear combinations of the Slater type orbitals (STO's) presented here. The orbital 
exponents (~') and MO coefficients are also listed 

Molecule Basis set STO ~ MO coefficients 

01 02 03 

H 2 m(I) ls 1.285 1.0 ~ H  2 

qb 2) ls~ 1.64 0.0662849 H2 
ls 2 1.12 0.4741826 
2pz 2.00 0.0250578 

~(s) ls 1.19 0.48610 H2 
lSBond 1.19 0.11089 

LiH (I)Li H lSl,Li 2.521 0.91404 
laz,Li 4.699 0.09375 
2SLi 0.797 0.00737 
2Pz~,L~ 0.737 --0.01061 
2pz2,Li 1.200 0.02020 
l s l ,  H 0.888 0 .00367 

lS2.H 1.566 0.00212 
2pz.H 1.376 0.00617 

L i  2 (Y~Li 2 ls~ 2.69 1.0 
ls b 2.69 1.0 
2s~ 0.694 0 
2s  b 0.694 0 

-0.16422 
0.00957 
0.25797 

-0.12394 
-0.06485 

0.69595 
0.06224 
0.02057 

1.0 
-1.0 

0 
0 

0 
0 
1.0 
1.0 
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Table 2. Compar i son  of total ground-state  energies of  H2 obtained with variational and fixed-node 
QMC using various correlation functions. (Hartree-  Fock energy = - 1.1336; Exact energy = - 1.17447) 
Energies are in hartrees 

Variational Fixed-node 
Basis e-e  correlation e -n  correlation 
set function function Energy % ce Energy % ce 

dp(I) H2 

(I)(2) 
H2 

dp(33 
He 

- -  - -  - 1 . 1 1 8  < 0  - -  - -  

exp a - -  -1.134 (3) 0 (8) - -  - -  
linear ~ - -  -1.148 (1) 35 (3) - -  - -  
linear b J - P  . . . .  1.154 (2) 50 (5) - -  - -  
j _ p < d  __  --1.1566 (15) 56 (4) --1.173 (3) 96 (8) 
Q J - P e ' f  - -  -1.1569 (6) 57 (1) -1 .174 (4) 99 (9) 
exp exp g'h - -  -1.1579 (6) 59 (2) -1.172 (4) 94 (10) 
( 1 - e x p )  ~J - -  -1.1581 (14) 60 (3) -1.175 (3) 101 (8) 
Q exp exp k't - -  -1.1581 (9) 60 (2) -1.175 (2) 101 (5) 
Q ( 1 - e x p )  .... - -  -1.1583 (4) 60 (1) -1.174 (2) 99 (5) 

- -  - -  - 1 . 1 3 4 ( 1 )  0 ( 3 )  - -  - -  

J - P ~ , ~  - -  -1.1587 (5) 61(1)  -1.1735 (26) 98 (6) 
j _ p ~ , o  J - P  . . . .  1.1652 (9) 77 (2) -1.1729 (14) 96 (3) 
( 1 - e x p )  ~'p - -  -1.1595 (7) 63 (2) -1.1748 (20) 101 (5) 
( 1 - e x p )  i'p J - P  . . . .  1.1662 (9) 80 (2) -1.1744 (16) 100 (4) 

- -  - -  - 1 . 1 2 9  ( 3 )  < 0  - -  - -  

j _ p c , o  j _ p  . . . .  1.165 (1) 77 (2) -1 .174 (3) 99 (7) 
(l_exp)~.q j _ p  . . . .  1.1657 (5) 79 (1) -1.176 (2) 104 (5) 

a e~r, Eq. (3) 
b 1 + d r ,  Eq. (4) 

c Jas t row-Pade  form, Eqs. (9), (10a) 
d b = 0.35 

e Quadratic Jas t row-Pade ,  Eqs. (9), (10b) 

f b 1 =0.38,  a2=0.088 , b2=0.144 
g double exponential ,  Eq. (16a) 
h b = 0 . 8  

i ( 1 - e x p )  form, Eq. (16b) 
J b = 0 . 6  
k Quadrat ic  double exponential ,  Eq. (17a) 

I b = 0 , 8 ,  c = 1 4  

m Quadrat ic  ( 1 - e x p ) ,  Eq. (17b) 
n b=0 .55 ,  a = 18 
o b = 0 . 5  

P b = 0.55 

q b =0.72 
r Jas t row-Pade  form, Eq. (19) 
s A =0.1,  v = l . 0  
t A = 0 . 1 6 ,  v = l . 0  
u A=0.15 ,  v = l . 0  

When q5 is not re-optimized in the presence of $, electron-nuclear (e-n) "correla- 
tion" functions often provide considerable additional reduction in the variational 
energy when used in conjunction with electron-electron correlation functions. 
The reason is that electron correlation is repulsive, pushing electrons away from 
each other, and thus on average pushing them too far away from the nuclei. (This 
is particularly true for the core electrons in large-Z atoms.) Because q5 is obtained 
from a mean-field calculation in which the charge radius (a "global" or average 
property) is roughly correct, the introduction of an electron correlation function 
S(r~j) without corresponding adjustment to 4) incorrectly expands the electron 
cloud, thereby increasing the charge radius. Adding an electron-nuclear "correla- 
tion" factor in effect reoptimizes ~b globally. Our simulations show the importance 
of the e-n term in energy and variance reduction. Only for H2 have we found 
the situation not so critical, because there the two electrons can both find space 
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near the nucleus and yet avoid each other. For the e-n term one can use a form 
similar to (16a), namely 

S(ri~) = exp {B exp (r~/A)} (18) 

or a Jastrow-Pade form 

a_r,~ I (19) S(ri~) = exp ( 1 + vr,j" 

In (19), u should be large enough to make S(r~) saturate rapidly at large r~, 
i.e., the range of the compensating attractive force must also be short. 

3. Additional correlation effects 

The above discussion has been based on the assumption that electron correlation 
is functionally the same everywhere in space, i.e. independent of the location of 
the electron pair. However, as alluded to earlier, the correlation may change as 
a function of the surrounding charge density, since the Coulomb screening varies. 
Thus, we can reasonably suppose that electron correlation depends not only on 
the separation of two electrons, but also on the location of the electron pair. 

One way of introducing such many-body effects is by making the correlation 
function, S, dependent on the density p. A form which does this was introduced 
by Colle and Salvetti (CS) [28], who used 

s :  [I [ a -  r rj)] (20) 
i>j 

where 

r i)) = exp (-/~2r~)[1 - ep(R)(1 + ar~)] (21) 

with R=-Ir ,+  rj[/2, <P(R) =- 7rl/2fl(n)/(l+Tr'/2fl(R)), and fl(R)~ o~pl/3(R). CS 
choose a = 0.5 a.u. to satisfy the cusp condition for unlike spins. Using perturba- 
tion theory with a trial wave function containing this correlation factor, CS 
obtained 98% of the correlation energy of Be. Again, a variational (Monte Carlo) 
calculation [4b] with the same trial wave function showed this to be an artifact - it 
gave only 3% of the correlation energy. In another variational study of the CS 
factor [29], good results were obtained for He (81% of the correlation energy) 
after optimization of the parameter a, though a simple Jastrow factor proved 
better for Be. However, it was noted that results were strongly dependent on a, 
and that the poor results obtained with the CS form in [4b] are probably 
attributable to using a non-optimum value for o~. Overall, the CS form has proved 
to have some merit, but to be less satisfactory and more complex than a Jastrow 
factor. However, a density dependence in the correlation factor remains a reason- 
able goal. For this reason it is perhaps better to introduce a density dependence 
into the Jastrow form, or better yet, into (16) and (17). 

In (16a) and (16b), for example, b is taken as a constant for a particlar molecule. 
Alternatively, by making b a function of the electron density through the location 
of the electron pairs, one in effect produces a many-body correlation. In order 
to test such a many-body term we have performed calculations on Li2 using two 
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Table 3. Compar ison of total ground-state energies of  LiH obtained with variational and fixed-node 
QMC using various correlation functions. (Hartree-Fock energy = -7 .987 ;  Exact energy =-8 .070 . )  
More precise fixed-node calculations of LiH have been performed in [31]. Energies are in hartrees 

Variational Fixed-node 
Basis e -e  correlation e -n  correlation 
set function function Energy % ce Energy % ce 

(DLi H j__pa,b J -  Pg'" -8.035 (2) 58 (2) -8.069 (1) 99 (1) 
( l_exp)r j_pg,i -8.055 (3) 82 (3) -8.067 (3) 96 (3) 
Q (1 - e x p )  e'f J-PgJ -8.056 (3) 83 (3) -8.071 (2) 101 (2) 
Q exp exp k'l j _  pg, i -8.055 (2) 82 (2) -8.072 (2) 102 (2) 

Jastrow-Pade form, Eqs. (9), (10a) 
b b = l . 0  

(1 --exp) form, Eq. (16b) 
b = 0.37 
Quadratic (1 - e x p )  form, Eq. (17b) 

f b = 0.38, e = 3.33 

g Jastrow-Pade form Eq. (19) 
h ALi = 0.031, Art = 0.103, .VLi = /~H = 0.5 
I ALi=0.30 ' AH=0.10, /~Li = ib, H =0.8 
J ALi=0.33, AH =0.10, ULi = UH =0.8 
k Quadratic double exponential form Eq. (17a) 

b = 0.48, c = 3.33 

forms for b. For the first one space is divided into two parts: a sphere of radius 
~7 whose origin is the mid-point of the two nuclei, and the rest of space. The 
value of b switches smoothly from b2 inside the sphere to bl outside. Explicitly, 
b is the following function of the rms distance r0 of the electron pair from the 
origin (see Fig. 1): 

b(ro)  = b,  + N ( b 2  - bl)[e ~(rg-"2) + 1] -1 ,  (22) 
where N = e-"n2+ 1, and ro 2 = 2 2 ri + r;. The "diffuseness" and the location of the 
boundary between the two regions are controlled respectively by a and ~7- 

Calculations performed using this correlation function lead to lower variational 
energies than with a fixed value of b (see Table 4, line 4; compare with line 2). 

Table 4. Compar ison of total ground-state energies of  Li2 obtained with variational and fixed-node 
QMC using various correlation functions. (Hartree-Fock energy =-14 .872 ;  Exact energy = -14 .994  
[32].) Energies are in hartrees 

Variational Fixed-node 
Basis e-e  correlation e -n  correlation 
set function function Energy % ce Energy % ce 

(I)Li 2 j_pa,b j_pk,~ -14.911(2)  32(2) -14.984(3)  92(3) 
(l_exp)C,d j_pk,m -14.939(2)  55(1) -14.983(3)  91(2) 
Q ( l _ e x p ) e , f  j _ p k , ,  --14.939(5) 55(4) --14.989(5) 96(4) 
D ~ ( 1 - e x p )  c'g'h j _  pk,o --14.943 (2) 58 (1) --14.985 (3) 93 (2) 
D (z) ( 1 - e x p )  r j _  pk,m --14.941 (1) 57 (1) --14.987 (3) 94 (2) 

a Jastrow-Pade,  Eqs. (9), (10a) 
b b = 0 . 5  

r (1 - e x p )  form, Eq. (16b) 
d b = 0.36 
e Quadratic ( 1 - e x p )  form, Eq. (17b) 
f b = 0.35, c = 6.5 
g density dependence through Eq. (22) 
h ~ = 1.5, b 1=0.38, b2=0.26, a =4.0 

i Density dependence through Eq. (23) 
J /~ = 0.38, c = 0.38, d = 0.60 
k Jastrow-Pade form, Eq. (19) 
i A = 0 . 3 ,  v = 0 . 5  

A = 0.3, v = 0.8 
A = 0.25, v = 0.8 

~ A=0.28,  v=0 .8  
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Fig. 1. Position-dependent correlation 
parameter b(ro). The solid line is Eq. 
(22) while the dashed one is Eq. (23) 
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Even though this model is crude, it demonstrates that the location of the electron 
pair influences the degree of correlation. One might argue that this results simply 
from the addition of more variational parameters. However, the degree to which 
a parameter  lowers the energy reflects the underlying physics. In this case it 
indicates that to a certain extent the correlation does depend on the charge 
density. 

Another form with variable b was also constructed. It has one less variational 
parameter  than (22), and thus the diffuseness and the crossover point cannot be 
separately controlled. This form is 

b(ro) =/~ exp [ - c  exp (-dr2)] .  (23) 

For a comparison of these two forms see Fig. 1. Results obtained using (23) show 
a lowering of the variational energy similar to (22) (cf. Table 4). 

A form that contains explicit density dependence, might be superior to those 
proposed above. For example, such a form may have b vary as 

b(ro) = bo exp ( - d p  ~ ) (24) 

with p(ro) calculated from the SCF part of the trial wave function, i.e. p = [~bl2; 
A would be empirically determined. 

4. Results and discussion 

The variational energy obtained with the wave function of Eq. (1) provides a 
good criterion for judging the quality of a correlation function, especially when 
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the function ~b is held fixed. A better correlation function should result in a lower 
variational energy, once its parameters are optimized. Another related indicator 
of  the quality of a wave function [9] is the smallness of  the statistical error for 
a given amount  of  sampling in the QMC method. The variational energy, however, 
gives a clearer picture of  the quality of the correlation function, because the 
variance i t se l f -par t icular ly  in QMC calcula t ions-usual ly  has a considerable 
statistical uncertainty associated with it. 

To construct qS, molecular orbitals (MO's) Ok were formed from linear combina- 
tions of  Slater-type orbitals, and were used to form a Slater determinant with the 
symmetry of the ground state. The MO linear coefficients were optimized using 
the SCF method. The basis sets used in the present calculations are listed in 
Table 1. The full trial function has the form of (1) - a product of  an SCF part 
and a correlation function. In the correlation function we have used a = 0.5 a.u. 
throughout, on the assumption that the electron-electron cusp for unlike spins 
is the more important to satisfy. Little difference has been found numerically 
when like spins are treated sepa ra te ly -wi th  a =0.25 a.u. [8, 30]. Tables 2-4 
present the results of  our calculations. Some comments on our findings follow. 

4.1. Hydrogen molecule 

A.(1~ (single zeta), $ ~  (double We have used three different basis sets for H2:'~'H2 
A . ( 1 )  zeta+polar izat ion) ,  and $~2 (single z e t a + b o n d  function). For basis set ~,n2 we 

investigated many forms of correlation function (see Table 2). 

•  For 9H~ we note that the variational energy for the basis set without a correlation 
function is approximately -1.118 h. The correlation functions (3) and (4) lower 
the energy to - 1 . 134h  and -1.148 h, respectively, without an e-n  correlation 

1 

0 . 6 -  / / 
/ 

/ 

0 . 4  i i i t 
0 1 2 3 4 5 

r t  i 

Fig. 2. Compar i son  of  the optimized correlation functions,  for H 2 ( - -  - - - ) ,  LiH ( 
The form used is Eq. (17b) 

) and Li2 (-  - - ) .  
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factor. Adding an e-n factor lowers the energy further to -1.154 h. On the other 
hand, using the physically motivated functions of (16) and (17) or the Jastrow 
functions (10) (even without e-n factors) gives variational energies lower than 
-1 .154h.  However, we found that with this basis set, combining an e-n factor 
with these correlation functions did not lead to significant variational energy 
lowering. Results obtained using (16) and (17) were improved over those using 
(10), though the difference was smaller than that obtained comparing (3) to (4). 
The poorer behavior of the Jastrow-Pade functions relative to those proposed 
here probably results from their weaker and longer range pseudo-force. 

�9 (1)  2 . ( 2 )  2 . ( 3 )  Unlike ~u2, calculations using basis sets ,vH~ and ~vn2 show lowering of the 
variational energy with inclusion of an e-n factor. This is likely due to the 
polarization component (or bond function in the case of ..c3)~ which enriches 

, ~ H 2 ]  

electron density in the bonding region. Though this improves the charge distribu- 
tion over ~b~, this distribution is modified by the e-e correlation function, because 
the strong electron repulsion tends to offset this higher density in the bonding 
region. The pseudo-force resulting from the e-n factors compensates by pulling 
the electrons toward the nuclei, effectively again increasing the density in the 

.~1~ the density in the bonding bonding region. On the other hand, for basis set w,2 
region is lower initially, and so the electron-electron correlation factor appears 
to cause little change in the density for the e-n factor to correct. 

4.2. Li thium diatomics 

As shown in Tables 3 and 4, function (17b) leads to lower variational and 
fixed-node energies than the Jastrow-Pade function. As expected, for these slightly 
larger molecules the range of electron correlation is shortened due to screening. 
As the molecule becomes larger the strength of the pair correlation also becomes 
weaker (see Fig. 2). In addition, the electon-nuclear factor becomes more impor- 
tant for larger Z atoms. The denser electron charge cloud near atomic centers - in 
the absence of an attractive e-n pseudo-force - becomes overly extended because 
of the e-e factor. 

Calculations for Li2 using the implicit density dependence of (22) and (23) are 
reported in Table 4. These variational results are lower than those obtained with 
(10), (16) or (17) alone. From these results we conclude that the location of 
electron pairs does play a role in their correlation. When we ignore this effect, 
only average correlation over the space is considered. In effect, Eqs. (22) and 
(23) introduce many-body effects into the correlation function. Our calculations 
using variable b take about 20% more computer time (for the same number of 
Monte Carlo iterations) than for fixed b. To compute the cost effectiveness, 
Ceperley [9] gives the following expression connecting the variational energy 
with the minimum variance of the fixed-node energy for a trial function 

cr2oc E~ - Eo. (26) 

Here E~ is the variational energy of the trial function, and E0 is the exact energy. 
Noting that Eo = -14.994 h, and that E~ = -14.939 h with (16b), while combined 
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with (22) Eo =-14.943 h, it is expected that (22) should reduce the fixed-node 
variance, and hence computing time, by about 10%. Since this is at a cost of 
roughly 20% more computer time consumed evaluating a more complex S and 
its derivative, together with optimization of parameters for (22), the benefit of 
this function in a fixed-node calculation appears marginal. In VMC, however, 
where (22) lowers the energy, a benefit is achieved. Improvements modeled on 
(22)-(24) may lead to further energy lowering and variance reduction for VMC 
and QMC. 

5. Conclusions 

It is reasonable to suppose that when two electrons are close, they feel a strong 
correlation "force," and when their separation approaches the order of the size 
of the molecule under consideration, the "force" should quickly decay to zero. 
The correlation functions considered here have this behavior. Figure 3 compares 
the Jastrow-Pade form (10a) (properly normalized) to the double exponential 
form of (16a). One sees that the double exponential form has a more rapid cut 
off at large ru, and meets the above physical condition better than the Jastrow-Pade 
form. In the two parameter forms, the additional quadratic factor allows for the 
independent tuning of the range and strength of the correlation, so that in general 
these are more flexible. Unlike the quadratic Jastrow-Pade factors, however, the 
roles of the parameters in (17a) and (17b) are much clearer. The parameter b 
fixes S(ru =0)  and controls the "depth"  of the pseudopotential we l l -whi le  c 
determines the range of the pseudopotential. Our calculations show, however, 
that the parameter c generally does little to improve results over the one-parameter 
forms. Since the one-parameter forms are much easier to optimize and use less 
computer time to evaluate, (16a) and (16b) are satisfactory for many applications. 

0.8 

0.6 

0.4 

. /  

i i i 
2 3 4 

r i j  

Fig. 3. Comparison of Jastrow-Pade form, S~ (- - -), with the double exponential form Sz ( 
for fixed correlation strength 
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On the other hand, (16a) and (17a) are especially easy to implement, as their 
derivatives are particularly simple. 

In conclusion, it is clear that adding even simple electron-electron correlation 
factors can improve the variational energy significantly. Using more complex 
forms often leads to only modest improvement in variational energies but carries 
considerably greater cpu-time requirements, This indicates the advantages of 
using simple, compact functional forms for S for use in VMC. For QMC, using 
the product form (1) and the forms of S we have discussed, the trial wave function 
has the same nodes with or without correlation. This means that fixed-node 
energies are independent of S, and that the role of S in QMC is solely for variance 
reduction. Thus a simple form is especially desirable. Our goal here was to test 
forms of S that are compact, and to ascertain their efficacy for describing electron 
correlation. 

6. Summary 

In this paper we have introduced a set of related forms for the electron correlation 
function which, based on Monte Carlo study, appear to be superior to the usual 
Jastrow-Pade forms. We have discussed the behavior of the various electron 
correlation functions, their ease of optimization, their interplay with electron- 
nuclear factors, and the characteristics of the associated pseudoforce. Monte 
Carlo calculations show the relative quality of these functions. Finally, we have 
presented an electron correlation function whose correlation strength changes 
with position, and implicitly with the electron density. This form, which implicitly 
contains many-body correlation effects, lowers the variational energy. Thus we 
conclude that such many-body effects play a role in correctly describing the 
molecular wave function. 
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